Molto interessante. Sembra che abbia senso usare supertweeter e bisogna farsi pre ed amp che arrivino sino ai 50kHz (i miei ci arrivano

). Peccato che l'articolo non sviluppi in maniera più approfondita i meccanismi con cui le altissime frequenze vengono "sentite".
L'aspetto più sorprendente è stato leggere che anche chi ha udito "impaired" percepisce la presenza di altissime frequenze.
Mi viene voglia di farmi un ciddì con la sovrapposizione di un tono a 40kHz ad un brano ed ascoltarlo per valutare eventuali differenze.
Ti aggiungo alcune considerazioni OT di de Paravicini sui mikes. Vergognati, non vi avrebbe neanche rivolto la parole!
A circular diaphragm has one dominant resonant mode. But a rectangular diaphragm does not have the same resonant mode in both axes, so it tends to have a flatter response. Also, a rectangular diaphragm has less off-axis coloration in the horizontal plane than does a circular diaphragm of the same area.
My mikes are transformer-coupled, triode designs. The electronics have a frequency response of 5 Hz to 35 kHz (-1 dB).
I use transformers in my microphones because they can do the job better than anything else. There's no advantage in transformerless circuits because a lot of them can't drive long lines. As long as I know that the electronics of my microphone go from 3 Hz to 100 kHz at the end of 1,000 meters of cable, I'm all right.
Some transformerless mikes have pathetic headroom. Disgusting. We're besotted with this phantom-power philosophy. Most of the mikes draw only I damn milliamp at 48 volts, max. That's 48 mW of energy; it doesn't give you a lot of headroom. I want a mike that can shove 3 volts, +12 dBm, down a line, 20 to 20k, boom! Why so much voltage? Suppose you take a capacitor mike that produces 10-mV output with 74-dB SPL input. At 144 dB SPL, the mike will put out over 3 volts.
** we are made of nothing but voices echoing from the past
and pointing their fingers to the future showing the direction. we will eventually follow that line **